Importance of domain closure for the catalysis and regulation of Escherichia coli aspartate transcarbamoylase.
نویسندگان
چکیده
Two hybrid versions of Escherichia coli aspartate transcarbamoylase were studied to determine the influence of domain closure on the homotropic and heterotropic properties of the enzyme. Each hybrid holoenzyme had one wild-type and one inactive catalytic subunit. In the first case the inactive catalytic subunit had Arg-54 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 17,000-fold reduction in activity, no loss in substrate affinity, and an R state structurally identical to that of the wild-type enzyme. In the second case, the inactive catalytic subunit had Arg-105 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 1,100-fold reduction in activity, substantial loss in substrate affinity, and loss of the ability to be converted to the R state. Thus, the R54A substitution results in a holoenzyme that can undergo closure of the catalytic chain domains to form the high activity, high affinity active site and to undergo the allosteric transition, whereas the R105A substitution results in a holoenzyme that can neither undergo domain closure nor the allosteric transition. The hybrid holoenzyme with one wild-type and one R54A catalytic subunit exhibited the same maximal velocity per active site as the wild-type holoenzyme, reduced cooperativity, and normal heterotropic interactions. The hybrid with one wild-type and one R105A catalytic subunit exhibited significantly reduced maximal velocity per active site as compared with the wild-type holoenzyme, reduced cooperativity, and substantially reduced heterotropic interactions. Small angle x-ray scattered was used to verify that the R105A-containing hybrid could attain an R state structure. These results indicate the global nature of the conformational changes associated with the allosteric transition in the enzyme. If one catalytic subunit cannot undergo domain closure to create the active sites, then the entire molecule cannot attain the high activity, high activity R state.
منابع مشابه
ATP-liganded form of aspartate transcarbamoylase, the logical regulatory target for allosteric control in divergent bacterial systems.
In Escherichia coli, the mechanism for regulatory control of aspartate transcarbamoylase is clear; CTP allosterically inhibits catalysis in direct competition with ATP. However, both CTP and ATP may be activators or may have no effect on aspartate transcarbamoylases from other enteric bacteria. A common regulatory logic observed was that the ATP-activated enzymes were rendered less active as th...
متن کاملStabilization of the R allosteric structure of Escherichia coli aspartate transcarbamoylase by disulfide bond formation.
Here we report the first use of disulfide bond formation to stabilize the R allosteric structure of Escherichia coli aspartate transcarbamoylase. In the R allosteric state, residues in the 240s loop from two catalytic chains of different subunits are close together, whereas in the T allosteric state they are far apart. By substitution of Ala-241 in the 240s loop of the catalytic chain with cyst...
متن کاملCooperative interactions in aspartate transcarbamoylase. 1. Hybrids composed of native and chemically inactivated catalytic polypeptide chains.
Hybrids of aspartate transcarbamoylase (EC 2.1.3.2; carbamoylphosphate: L-aspartate carbamoyltransferase) from Escherichia coli containing native (active) and pyridoxylated (inactive) catalytic polypeptide chains were constructed by a procedure involving the reversible acylation of amino groups with 3,4,5,6-tetrahydrophthalic anhydride. This technique exploited the charges contributed by the te...
متن کاملBinding of bisubstrate analog promotes large structural changes in the unregulated catalytic trimer of aspartate transcarbamoylase: implications for allosteric regulation.
A central problem in understanding enzyme regulation is to define the conformational states that account for allosteric changes in catalytic activity. For Escherichia coli aspartate transcarbamoylase (ATCase; EC) the active, relaxed (R state) holoenzyme is generally assumed to be represented by the crystal structure of the complex of the holoenzyme with the bisubstrate analog N-phosphonacetyl-L...
متن کاملSubstrate-induced conformational change in a trimeric ornithine transcarbamoylase.
The crystal structure of Escherichia coli ornithine transcarbamoylase (OTCase, EC 2.1.3.3) complexed with the bisubstrate analog N-(phosphonacetyl)-L-ornithine (PALO) has been determined at 2.8-A resolution. This research on the structure of a transcarbamoylase catalytic trimer with a substrate analog bound provides new insights into the linkages between substrate binding, protein-protein inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 30 شماره
صفحات -
تاریخ انتشار 2002